0

Full Content is available to subscribers

Subscribe/Learn More  >

Nonclassical Heat Transfer Models for Laser-Induced Thermal Damage in Biological Tissues

[+] Author Affiliations
Jianhua Zhou, J. K. Chen, Yuwen Zhang

University of Missouri, Columbia, MO

Paper No. IMECE2011-62018, pp. 249-260; 12 pages
doi:10.1115/IMECE2011-62018
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

To ensure personal safety and improve treatment efficiency in laser medical applications, one of the most important issues is to understand and accurately assess laser-induced thermal damage to biological tissues. Biological tissues generally consist of nonhomogeneous inner structures, in which heat flux equilibrates to the imposed temperature gradient via a thermal relaxation mechanism which cannot be explained by the traditional parabolic heat conduction model based on Fourier’s law. In this article, two non-Fourier heat conduction models, hyperbolic thermal wave model and dual-phase-lag (DPL) model, are formulated to describe the heat transfer in living biological tissues with blood perfusion and metabolic heat generation. It is shown that the non-Fourier bioheat conduction models could predict significantly different temperature and thermal damage in tissues from the traditional parabolic model. It is also found that the DPL bioheat conduction equations can be reduced to the Fourier heat conduction equations only if both phase lag times of the temperature gradient (τT ) and the heat flux (τq ) are zero. Effects of laser parameters and blood perfusion on the thermal damage simulated in tissues are also studied. The result shows that the overall effects of the blood flow on the thermal response and damage are similar to those of the time delay τT . The two-dimensional numerical results indicate that for a local heating with the heated spot being smaller than the tissue bulk, the variations of the non-uniform distributions of temperature suggest that the multi-dimensional effects of thermal wave and diffusion not be negligible.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In