Full Content is available to subscribers

Subscribe/Learn More  >

Stiffness Characterization Using a Dynamic Heart Phantom and Magnetic Resonance Imaging

[+] Author Affiliations
Karen Chang Yan, Mary Kate McDonough

The College of New Jersey, Ewing, NJ

James J. Pilla, Chun Xu

University of Pennsylvania, Glenolden, PA

Paper No. IMECE2011-65222, pp. 247-248; 2 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME


Heart disease is the number one cause of death in the United States [1]. Cardiac Magnetic Resonance Imaging (MRI) technology can be used to diagnose and evaluate a number of diseases and conditions such as coronary artery disease, damage caused by a heart attack, heart failure, and heart valve problems etc. Given the inherent difficulty in imaging the heart in motion, many efforts have been made to improve cardiac motion tracking and eliminate motion related artifacts. A dynamic heart phantom (DHP) capable of simulating true physiological motions is a valuable research tool for improving quality of MR images and determining critical diagnostic information. For instance, MR images have been used to quantify myocardial strain and estimate soft tissue material parameters and in turn to learn about cardiac structure and function [2–4]. In these studies, heart phantoms made of rubber like materials with known material properties are often used as a mean of validation.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In