0

Full Content is available to subscribers

Subscribe/Learn More  >

Trans-Scleral Tonometry: Mechanical Palpation of the Eye

[+] Author Affiliations
Péter P. Polyvás, Eniko T. Enikov, Gholam Peyman, Vasco Polyzoev

University of Arizona, Tucson, AZ

Paper No. IMECE2011-64852, pp. 229-233; 5 pages
doi:10.1115/IMECE2011-64852
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

The development of new tonometers requires laboratory tests on enucleated eyes where the intraocular pressure (IOP) is usually controlled by the use of a fluid column (manometry). This article describes a novel eye pressure regulation system for IOP tests along with a new concept of mechanical palpation tonometry. Manometry is commonly regarded as an invasive technique that can measure precisely the pressure inside the eye. It is a common laboratory technique for evaluating changes in IOP over time, and for providing reference pressure by which all other tonometers can be evaluated. In general, the system consists of a fluid column (1% saline solution) connected via PVC tubing to a three way valve. The valve is able to connect the column branch to a syringe with a 21G needle inserted into the vitreous humor and to a pressure transducer. The syringe needle is inserted in the eye through the side, with the tip located approximately in the middle of the vitreous chamber [1]. However, this method is prone to errors due to the gelatinous and highly fibrous nature of the vitreous matter that could easily clog the syringe needle and prevent the accurate pressure control and measurement. To resolve this difficulty, we report an alternative control of the IOP through the anterior chamber of the eye. In addition to the clogging, severed blood vessels in enucleated eyes result in large rate of leakage of intraocular fluid. With these modifications in place, it was demonstrated that the pressure sensing is fast and accurate, allowing investigation of mechanical trans-scleral palpation and the development of a new concept of mechanical palpation tonometry device. The device is based on multiple probes for measuring contact forces. Experimental data from the performance of the device are presented.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In