Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Dynamic Viscoelastic Model for Osteoarthritic Cartilage Indentation Force

[+] Author Affiliations
A. Vidal-Lesso

Universidad de Guanajuato, Salamanca; Instituto Tenologico de Celaya, Celaya, GUA, Mexico

E. Ledesma-Orozco

Universidad de Guanajuato, Salamanca, GUA, Mexico

R. Lesso-Arroyo

Instituto Tecnologico de Celaya, Celaya, GUA, Mexico

L. Daza-Benitez

Specialty Medical Unit-IMSS, Leon, GUA, Mexico

Paper No. IMECE2011-64387, pp. 215-220; 6 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME


Biomechanical properties and dynamic response of soft tissues as articular cartilage remains issues for attention. Currently, linear isotropic models are still used for cartilage analysis in spite of its viscoelastic nature. Therefore, the aim of this study was to propose a nonlinear viscoelastic model for cartilage indentation that combines the geometrical parameters and velocity of the indentation test with the thickness of the sample as well as the mechanical properties of the tissue changing over time due to its viscoelastic behavior. Parameters of the indentation test and mechanical properties as a function of time were performed in Laplace space where the constitutive equation for viscoelasticity and the convolution theorem was applied in addition with the Maxwell model and Hayes et al. model for instantaneous elastic modulus. Results of the models were compared with experimental data of indentation tests on osteoarthritic cartilage of a unicompartmental osteoarthritis cases. The models showed a strong fit for the axial indentation nonlinear force in the loading curve (R2 = 0.992) and a good fit for unloading (R2 = 0.987), while an acceptable fit was observed in the relaxation curve (R2 = 0.967). These models may be used to study the mechanical response of osteoarthritic cartilage to several dynamical and geometrical test conditions.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In