0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Articulated Human Body Dynamics Under a Representative Blast Loading

[+] Author Affiliations
X. G. Tan, Andrzej J. Przekwas

CFD Research Corp., Huntsville, AL

Gregory Rule

Applied Research Associates, Inc., Albuquerque, NM

Kaushik Iyer, Kyle Ott, Andrew Merkle

Johns Hopkins University Applied Physics Laboratory, Columbia, MD

Paper No. IMECE2011-64331, pp. 71-78; 8 pages
doi:10.1115/IMECE2011-64331
From:
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME

abstract

Blast waves resulting from both industrial explosions and terrorist attacks cause devastating effects to exposed humans and structures. Blast related injuries are frequently reported in the international news and are of great interest to agencies involved in military and civilian protection. Mathematical models of explosion blast interaction with structures and humans can provide valuable input in the design of protective structures and practices, in injury diagnostics and forensics. Accurate simulation of blast wave interaction with a human body and the human body biodynamic response to the blast loading is very challenging and to the best of our knowledge has not been reported yet. A high-fidelity computational fluid dynamic (CFD) model is required to capture the reflections, diffractions, areas of stagnation, and other effects when the shock and blast waves respond to an object placed in the field. In this effort we simulated a representative free field blast event with a standing human exposed to the threat using the Second Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). During the CFD analysis the pressure time history around the human body is calculated, along with the fragment loads. Subsequently these blast loads are applied to a fully articulated human body using the multi-physics code CoBi. In CoBi we developed a novel computational model for the articulated human body dynamics by utilizing the anatomical geometry of human body. The articulated human body dynamics are computed by an implicit multi-body solver which ensures the unconditional stability and guarantees the quadratic rate of convergence. The developed solver enforces the kinematic constraints well while imposing no limitation on the time step size. The main advantage of the model is the anatomical surface representation of a human body which can accurately account for both the surface loading and the surface interaction. The inertial properties are calculated using a finite element method. We also developed an efficient interface to apply the blast wave loading on the human body surface. The numerical results show that the developed model is capable of reasonably predicting the human body dynamics and can be used to study the primary injury mechanism. We also demonstrate that the human body response is affected by many factors such as human inertia properties, contact damping and the coefficient of friction between the human body and the environment. By comparing the computational results with the real scenario, we can calibrate these input parameters to improve the accuracy of articulated human body model.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In