Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Force Response of Human Legs due to Vertical Jumps

[+] Author Affiliations
Kinjal Prajapati, Fred Barez, James Kao

San Jose State University, San Jose, CA

David Wagner

Veterans Affairs Hospital, Palo Alto, CA

Paper No. IMECE2011-62261, pp. 1-8; 8 pages
  • ASME 2011 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering; Nanoengineering for Medicine and Biology
  • Denver, Colorado, USA, November 11–17, 2011
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5488-4
  • Copyright © 2011 by ASME


Jumping is a natural exertion that occurs during a variety of human activities including playing sports, working, skateboarding, dancing, escaping from hazardous events, rescue activities, and many others. During jumping, the ankles in particular are expected to support the entire body weight of the jumper and that may lead to ankle injuries. Each year hundreds of patients are treated for ankle sprains/strains with ankle fractures as one of the most common injuries treated by orthopedists and podiatrists. The knee joint is also considered the most-often injured joint in the entire human body. Although the general anatomy of the lower extremities is fairly well understood, an understanding of the injury mechanism during these jumping tasks is not well understood. The aim of this study is to determine the reaction forces exerted on legs and joints due to vertical jumps, through musculoskeletal simulation and experimental studies to better understand the dynamic jump process and the injury mechanism. The joint reaction forces and moments exerted on the ankle, knee and hip joint during takeoff and extreme squat landing of a vertical jump were determined through the application of musculoskeletal simulation. It is concluded that during extreme squat landing of a vertical jump, joint reaction forces and moments were highest in proximal/distal and anteroposterior direction may cause most likely injury to the hip joint ligaments, ankle fracture and knee joint, respectively.

Copyright © 2011 by ASME
Topics: Force



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In