0

Full Content is available to subscribers

Subscribe/Learn More  >

Fuzzy Sliding Mode Control of a Flexible Spacecraft With Input Saturation

[+] Author Affiliations
Shengjian Bai, Qingkun Zhou, Xinsheng Huang

National University of Defense Technology, Changsha, Hunan, China

Pinhas Ben-Tzvi

The George Washington University, Washington, DC

Paper No. IMECE2009-12778, pp. 1055-1061; 7 pages
doi:10.1115/IMECE2009-12778
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 10: Mechanical Systems and Control, Parts A and B
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4383-3 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

This paper presents the dynamic modeling and fuzzy sliding mode control (FSMC) for a spacecraft with flexible appendages. A first-order approximate model (FOAM) of the flexible spacecraft system is formulated by using Hamilton’s principles and assumed mode method (AMM), taking into account the second-order term of the coupling deformation field. The use of classical Sliding Mode Control (SMC) presents a major problem that appears in the form of chattering. For highly flexible structural models, ideal sliding surface producing pure rigid body motion may not be achievable. In this paper, the discontinuity in the sliding mode controller is smoothened inside a thin boundary layer by using fuzzy logic (FL) techniques so that the chattering phenomenon is effectively reduced. The robustness of SMC only holds in the sliding mode domain (SMD). However, when the amplitude of the actuators is limited, SMD will be restricted to some local domain near zero on the switching surface. Control input saturation is also explicitly considered in the FSMC approach. The new features and advantages of the proposed approach are the use of new dynamic equations of motion of flexible spacecraft systems, and the design of FSMC by taking into account the control input saturation. To study the effectiveness of the corresponding control scheme, the classical SMC case is also developed for the control system. Numerical simulations are performed to show that rotational maneuvers and vibration suppression are accomplished in spite of the presence of disturbance torques, model uncertainty and control saturation nonlinearity.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In