Full Content is available to subscribers

Subscribe/Learn More  >

Measurement of Dynamic Viscoelasticity of an Osteoblast Under Adhesive Condition Using a Piezoelectric Vibrator

[+] Author Affiliations
Toshihiko Shiraishi, Takafumi Onishi, Shin Morishita

Yokohama National University, Yokohama, Japan

Ryohei Takeuchi

Yokohama City University School of Medicine, Yokohama, Japan

Paper No. IMECE2008-67235, pp. 635-640; 6 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4863-0 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Bone cells are adaptive to surrounding mechanical conditions. Osteoblasts, one of bone cells, have been reported to be sensible to mechanical stimulation and change the generated bone mass. Viscoelastic properties of such cells are predicted to be related to this phenomenon in the view of mechanical dynamics. In order to find the effective stimulation on the bone formation, it is necessary to understand the viscoelastic properties of the cells. Especially in the case of bone cells, it is important to consider their adhesive condition because they attach on surfaces of bone matrices. In this study, we measured dynamic viscoelastic properties of a cultured osteoblast, MC3T3-E1, under adhesive condition. Using the experimental results, we derived a model for viscoelasticity of the cell and identified the value of each element in this model. The cells were seeded on a glass plate in a petri dish. After the cells were cultured for one day and adhered on the glass plate, it was vertically raised and fixed on a piezo actuator. The center of the cell surface was aspirated with an L-shaped micropipette to be held. The glass plate was moved with the piezo actuator. The load applied to the cell was obtained by measuring the deflection of the micropipette whose spring constant was calibrated after each test. Deflection of the micropipette and elongation of the cell were measured by captured image during the test. As a result, the dynamic viscoelasticity of the cells was measured and modeled, and the value of each element in this model was identified.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In