0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational and Experimental Investigation of Arterial Hemodynamics

[+] Author Affiliations
William C. Rose, David Johnson, Jonathan Edwards, Antony Beris

University of Delaware, Newark, DE

Justin Spaeth

Princeton University, Princeton, NJ

Paper No. IMECE2008-67860, pp. 473-480; 8 pages
doi:10.1115/IMECE2008-67860
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4863-0 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Dynamic arterial blood pressure and blood flow are key determinants of normal or pathological functioning of the cardiovascular system. The measurement of these variables at multiple locations in the body is clinically and physiologically valuable, but difficult to achieve except with invasive methods which carry significant risk to the patient. We have developed and here present a computational model of systemic arterial hemodynamics. The model predicts dynamic pressures and flows throughout the systemic arterial vascular bed. The inputs to the model are pressure or flow measured at a single site, and a description of the architectural and mechanical properties of the blood and blood vessels. We have also measured dynamic pressure and flow noninvasively in healthy women and men. We use these measurements to test and refine the model. The arterial model includes over 24 million blood vessels. The dimensions and branching patterns of 45 large arteries are derived from population averages. Approximately half of these vessels terminate in self-similar branching networks of arteries which extend to capillary-sized vessels. Womersley’s linearization of the Navier-Stokes equations is used to describe the relationship between pressure and flow in each vessel. The inviscid wave velocity in each vessel is estimated based on the combined effects of Young’s modulus, vessel thickness and diameter, and the rheological properties of blood. The blood is modeled as a non-Newtonian fluid whose hematocrit and viscosity vary with vessel size. Wave reflections are computed at all junctions between vessels. The nonlinear pressure drop occurring at the bifurcation of each vessel into daughter vessels is estimated and taken into account when computing the pressures and flows throughout the network. Dynamic pressure is measured noninvasively by applanation tonometry. Dynamic blood velocity is measured with Doppler ultrasonography, and vessel diameter is measured using ultrasound. Custom software uses the electrocardiogram to average data from multiple beats to create ensemble average waveforms for pressure, velocity, and diameter. Data has been collected from the radial and carotid arteries. The experimentally measured pressure from one site is used as input to the model. The model predictions are compared to the other experimental measurements. Blood vessel mechanical properties are estimated by adjusting the model parameters to get good agreement between measured and predicted quantities. This capability can be used to understand effects of pathological changes in vascular properties on local pressure and flow behavior throughout the vasculature.

Copyright © 2008 by ASME
Topics: Hemodynamics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In