Full Content is available to subscribers

Subscribe/Learn More  >

Bifurcation of Spatiotemporal Cardiac Alternans

[+] Author Affiliations
Xiaopeng Zhao

University of Tennessee, Knoxville, TN

Paper No. IMECE2008-68717, pp. 431-435; 5 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4863-0 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Cardiac alternans is an initiator of ventricular fibrillation, a fatal heart rhythm disorder that kills hundreds of thousands people in the US each year. Alternans manifests as a pattern with beat-to-beat long-short variations in action potential duration. In an isolated cardiac cell, alternans arises as a supercritical period-doubling bifurcation. In cardiac tissue (coupled cells), propagation effect leads to more complicated bifurcation structures. Specifically, there may coexist multiple spatiotemporal patterns of alternans in tissue due to the interaction between electrotonic coupling and intrinsic instability in the dynamics of action potential. In this work, we carry out a detailed bifurcation analysis to illustrate the mechanism that leads to this phenomenon. The results on this analysis may shed light on the onset and control of the dreadful instability of cardiac alternans.

Copyright © 2008 by ASME
Topics: Bifurcation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In