0

Full Content is available to subscribers

Subscribe/Learn More  >

Two-Phase Heat Transfer Enhancement on Sintered Copper Microparticle Porous Structure Module Surface

[+] Author Affiliations
Calvin H. Li, Ting Li, Brian Kanney

University of Toledo, Toledo, OH

Paper No. IMECE2009-10799, pp. 2049-2054; 6 pages
doi:10.1115/IMECE2009-10799
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

An experimental study of the pool boiling two-phase heat transfer on a sintered Cu microparticle porous structure module surface is conducted. Enhanced heat transfer capacity of this module surface has been reported, and the boiling characteristics have been investigated. The bubble dynamics and nucleate size distribution have been compared to the theoretical predictions, and the speculated mechanisms have been discussed.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In