Full Content is available to subscribers

Subscribe/Learn More  >

Investigation of Heat Pipe Cooling in Drilling Applications: Part 2—Thermal, Structural Static, and Dynamic Analyses

[+] Author Affiliations
Lin Zhu

Anhui Agricultural University, Hefei, China; University of Wisconsin, Milwaukee, WI

Tien-Chien Jen, Yi-Hsin Yen

University of Wisconsin, Milwaukee, WI

Chen-Long Yin, Mei Zhu

Anhui Agricultural University, Hefei, China

Jianhua Zhang

Hebei University of Technology, Tianjin, China

Paper No. IMECE2009-10314, pp. 2027-2034; 8 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Drilling is a highly complex machining process coupled with thermo-mechanical effect. Both the rapid plastic deformation of the workpiece and the friction along the drill-chip interface can contribute to localized heating and increasing temperature in the workpiece and tool. The cutting temperature at the tool-chip interface plays an important role in determining the tool thermal wear. This in turn affects the dimensional accuracy of the workpiece and the tool life of drill. A new embedded heat pipe technology has been proven to be able to effectively not only remove the heat generated at the tool-chip interface in drilling, but also minimize pollution and contamination of the environment caused by cutting fluids. Less tool wear can then be achieved, thus prolonging the tool life. 3D Finite Element method using COSMOS/works is employed to study coupled effects of thermal, structural static and dynamic analyses in a drilling process to check the feasibility and effectiveness of the heat pipe drill. Four different cases, solid drill without coolant, solid drill with coolant, heat pipe drill, and heat pipe drill with coolant, are explored, respectively. The results from this study can be used to define geometric parameters for optimal designs.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In