Full Content is available to subscribers

Subscribe/Learn More  >

Thermophysical Characteristics of Self-Assembled Ethanol/Polyalphaolefin Nanoemulsion Fluids

[+] Author Affiliations
J. J. Xu, X. Liu, B. Yang

University of Maryland, College Park, MD

Paper No. IMECE2009-12544, pp. 2023-2026; 4 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


The strategy of adding solid particles to fluids for improving thermal conductivity has been pursued for more than one century. Here, a novel concept of using liquid nanodroplets for enhancing thermal performance has been developed and demonstrated in polyalphaolefin nanoemulsion fluids with dispersed ethanol nanodroplets. The ethanol/polyalphaolefin nanoemulsion fluids are spontaneously generated by self-assembly, and are thermodynamically stable. Their thermophysical properties, including thermal conductivity and viscosity, and impact on convective heat transfer are investigated experimentally. The thermal conductivity enhancement in these fluids is found to be moderate, but increases rapidly with increasing temperature in the measured temperature range from 35 oC to 75 oC. A very remarkable increase in convective heat transfer coefficient occurs in the nanoemulsion fluids due to the explosive vaporization of the ethanol nanodroplets at the superheat limit (i.e., spinodal states, about 122 oC higher than the atmospheric boiling point for ethanol). The explosive liquid-vapor phase transition is monitored using high speed camera. The fluid heat transfer could be augmented through the heat of vaporization (which intuitively raises the base fluid specific heat capacity) and the fluid mixing induced by the sound waves. The development of such phase-changeable nanoemulsion fluids would open a new direction for thermal fluids studies.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In