Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Decomposition Modeling and Thermophysical Property Measurement of a Highly Crosslinked Polymer Composite

[+] Author Affiliations
Aaron L. Brundage, Kenneth L. Erickson, Kevin J. Dowding

Sandia National Laboratories, Albuquerque, NM

Paper No. IMECE2009-12473, pp. 2015-2022; 8 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Thermophysical properties including density, specific heat, and thermal diffusivity of a poly (diallyl phthalate) inert filler composite material were characterized over a wide temperature range from room temperature to 800 °C. Over this temperature range, the material decomposition was approximated by a one-step process with first-order kinetics. Thermal kinetics data were obtained by thermal gravimetric analysis with Fourier transform infrared spectroscopy (TGA-FTIR) and thermophysical properties were obtained from differential scanning calorimetry (DSC) and laser flash diffusivity experiments. The response of the material to radiant heating was simulated with a computational heat transfer, multidimensional, finite element code. Additionally, the experimental uncertainty in the measurements was quantified to estimate the uncertainty in the reaction parameters due to heating rate and variability in inert filler-polymer composition in large sample sizes. Hence, the thermal response and the uncertainty were quantified for a complex decomposing material in a practical geometry for technologically important applications.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In