Full Content is available to subscribers

Subscribe/Learn More  >

Total Temperature Measurements of Gaseous Flow at Micro-Tube Outlet: Cooled From the Wall

[+] Author Affiliations
Takaharu Yamamoto, Chungpyo Hong, Koichi Suzuki

Tokyo University of Science, Noda, Chiba, Japan

Yutaka Asako

Tokyo Metropolitan University, Hachioji, Tokyo, Japan

Paper No. IMECE2009-12437, pp. 1943-1949; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


This paper presents experimental results on heat transfer characteristics of gaseous flow in a micro-tube with constant wall temperature whose wall temperature is lower than the inlet temperature (cooled case). The experiment was performed for nitrogen gas flow through a micro-tube with 163.4 micro meters in diameter and 50 mm in length. The gas was heated at the inlet of the micro-tube to Tin = 315K, 335K and 355K. The wall temperature was maintained at 305K which was lower than the inlet temperature by circulating water around the micro-tube. The stagnation pressure was chosen in such a way that the exit Mach number ranges from 0.1 to 0.9. The outlet pressure was fixed at the atmospheric condition. The total temperature at the outlet, the inlet stagnation temperature, the mass flow rate, and the inlet pressure were measured. The numerical computations based on the aribitary-Langrangian-Eulerian (ALE) method were also performed for the same conditions of the experiment. The total and bulk temperature obtained by the present study are compared with those of the numerical cases and also compared with temperatures of the incompressible flow. The results have similar trends.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In