Full Content is available to subscribers

Subscribe/Learn More  >

Planar Robotic Systems for Upper-Limb Post-Stroke Rehabilitation

[+] Author Affiliations
Giulio Rosati, Riccardo Secoli, Damiano Zanotto, Aldo Rossi, Giovanni Boschetti

University of Padua, Padova, Italy

Paper No. IMECE2008-67273, pp. 115-124; 10 pages
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4863-0 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME


Rehabilitation is the only way to promote recovery of lost function in post-stroke hemiplegic subjects, leading to independence and early reintegration into social and domestic life. In particular, upper limb rehabilitation is fundamental to regain ability in Activities of Daily Living (ADLs). Robot-aided rehabilitation is an emerging field seeking to employ leading-edge robotic systems to increase patient recovery in the rehabilitation treatment. Even though the effectiveness of robotic therapy is still being discussed, the use of robotic devices can increase therapists’ efficiency by alleviating the labor-intensive aspects of physical rehabilitation, and can produce a reduction in treatment costs. This paper presents a comparison between different planar robotic devices designed for upper-limb rehabilitation in chronic patients. A planar configuration of the workspace leads to straightforward mechanical and control system design, and allows to define very simple and understandable treatment exercises. Also, the graphical user interface becomes very intuitive for the patient, and a set of Cartesian-based measures of the patient’s performance can be defined easily. In the paper, SCARA (Selective Compliance Assembly Robot Arm) robots such as the MIT-Manus, Cartesian robots and cable-driven robots are considered and compared in terms of inertial properties and force exertion capabilities. Two cable-driven devices, designed at the Robotics Lab of the Department if Innovation In Mechanics and Management, University of Padua, Italy, are presented for the first time. The first robot employs four driven cables to produce a planar force on the end-effector, whereas the second one is based on a three-cable configuration plus a linear actuator to obtain better overall robot performance.

Copyright © 2008 by ASME
Topics: Robotics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In