0

Full Content is available to subscribers

Subscribe/Learn More  >

Bubble Dynamics Under Forced Oscillation in Microgravity Environment

[+] Author Affiliations
Mohammad Movassat, Nasser Ashgriz, Markus Bussmann

University of Toronto, Toronto, ON, Canada

Paper No. IMECE2009-12616, pp. 1787-1793; 7 pages
doi:10.1115/IMECE2009-12616
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Two-dimensional numerical simulation of bubble dynamics in microgravity is performed employing a Volume of Fluid (VOF) solver. Shape oscillation and deformation of bubbles under forced vibration are studied. Coupling between the oscillatory translational motion and shape deformation results in nonlinear behavior of bubbles at high amplitudes and frequencies. As a result of oscillation of the buoyancy force, the pressure field around the bubbles oscillates and bubbles interact with each other. Effect of vibration frequency and amplitude and liquid to gas density ratio on the shape of bubbles and bubble-bubble interaction is studied. It is shown that the shape of the bubbles in response to the forced vibrations mainly depends on the acceleration of the vibration.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In