Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Investigation of a Liquid Droplet Impinging on a Heated Surface

[+] Author Affiliations
Andres Diaz, Alfonso Ortega, Ryan Anderson

Villanova University, Villanova, PA

Paper No. IMECE2009-11387, pp. 1769-1775; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Previous studies, most of them experimental, reveal that the cooling effectiveness of a water drop impinging on a heated surface depends on the wall temperature, droplet shape and velocity. All previous studies focus on the behavior of a droplet falling in a quiescent environment, such as still air. Evidence in the literature also shows that gas assisted droplet sprays, in which a gas phase propels the droplets, are more efficient in heat removal than sprays consisting of droplets alone. It is conjectured that this is due to an increase in the maximum droplet spreading diameter upon impact, a thinner film, and consequently an increase in the overall heat transfer coefficient. Recent experiments in the author’s group [1, 2] show that the carrier gas jet strongly influences droplet spreading dynamics by imposing normal and shear forces on the liquid surface. The heat transfer is greatly augmented in the process, compared to a free falling droplet. To date, there has been no fundamental investigation of the physics of gas assisted spray cooling. To begin to understand the complicated process, this paper reports on a fundamental problem of a single liquid droplet that impinges on a heated surface. This paper contributes a numerical investigation of the problem using the volume of fluid (VOF) technique to capture droplet spreading dynamics and heat transfer in a single drop event. The fluid mechanics is investigated and compared to the experimental data. The greatest uncertainty in the simulation is in the specification of the contact angle of the advancing or receding liquid front, and in capturing the onset of the three-dimensional fingering phenomena.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In