0

Full Content is available to subscribers

Subscribe/Learn More  >

Nano-Scale Forces, Stresses, and Tip Geometry Evolution of Amplitude Modulation Atomic Force Microscopy Probes

[+] Author Affiliations
Vahid Vahdat, Robert W. Carpick

University of Pennsylvania, Philadelphia, PA

David S. Grierson, Kevin T. Turner

University of Wisconsin-Madison, Madison, WI

Paper No. DETC2011-48653, pp. 543-549; 7 pages
doi:10.1115/DETC2011-48653
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 5th International Conference on Micro- and Nanosystems; 8th International Conference on Design and Design Education; 21st Reliability, Stress Analysis, and Failure Prevention Conference
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5484-6
  • Copyright © 2011 by ASME

abstract

Atomic-scale wear is one of the main factors that hinders the performance of probes for atomic force microscopy (AFM) [1–6], including for the widely-used amplitude modulation (AM-AFM) mode. To conduct consistent and quantitative AM-AFM wear experiments, we have developed a protocol that involves controlling the tip-sample interaction regime, calculating the maximum contact force and normal stress over the course of the wear test, and quantifying the wear volume using high-resolution transmission electron microscopy imaging (HR-TEM). The tip-sample interaction forces are estimated from a closed-form equation that uses the Derjaguin-Müller-Toporov interaction model (DMT) accompanied by a tip radius measurement algorithm known as blind tip reconstruction. The applicability of this new protocol is demonstrated experimentally by scanning silicon probes against ultrananocrystalline diamond (UNCD) samples. The wear process for the Si tip involved blunting of the tip due to tip fragmentation and plastic deformation. In addition, previous studies on the relative contributions of energy dissipation processes to AFM tip wear are reviewed, and initial steps are taken towards applying this concept to AM-AFM.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In