0

Full Content is available to subscribers

Subscribe/Learn More  >

Improving the Mechanical Properties in Tissue Engineered Scaffolds

[+] Author Affiliations
M. T. Arafat, M. M. Savalani, I. Gibson

National University of Singapore, Kent Ridge, Singapore

Paper No. IMECE2008-66403, pp. 3-6; 4 pages
doi:10.1115/IMECE2008-66403
From:
  • ASME 2008 International Mechanical Engineering Congress and Exposition
  • Volume 2: Biomedical and Biotechnology Engineering
  • Boston, Massachusetts, USA, October 31–November 6, 2008
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4863-0 | eISBN: 978-0-7918-3840-2
  • Copyright © 2008 by ASME

abstract

Scaffold-based tissue engineering research aims to aid in the repair and regeneration of bone defects. Scaffolds act as a basis for carrying cells or therapeutic agents for regenerative therapies. To achieve this, the scaffold should have appropriate osteoconductive, osteoinductive and biodegradable properties. To date, such structures have only been used with some success in low-load bearing applications, despite the large variety of biomaterials and fabrication techniques explored in the last two decades. Previous studies have illustrated the suitability of the Fused Deposition Modelling (FDM) process in fabricating PCL-20% β-TCP scaffolds for low-load bearing bone tissue engineering applications. This paper aims to demonstrate the possibility of increasing the mechanical properties of such scaffolds by introducing a through-hole. In addition, it is conjectured that such through-holes may also become useful for the channeling or storage of nutrients. A number of scaffolds with through-holes of various sizes were fabricated in order to study the effect of the through-hole diameter on the modulus (stiffness) of the complete scaffold. It was observed that the stiffness of the scaffolds varies with the diameter of the through-hole. After a certain through-hole diameter threshold the stiffness of the scaffold begins to increase above that of the original scaffold. An improvement of approximately 37% was observed in the PCL-20% β-TCP scaffolds. Also, it was noted that the threshold value for the through-hole diameter depends on the spacing of the adjacent filaments of the scaffolds.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In