Full Content is available to subscribers

Subscribe/Learn More  >

Bubble Injection to Enhance Heat Transfer in Microchannel Heat Sinks

[+] Author Affiliations
Amy Rachel Betz, Daniel Attinger

Columbia University, New York, NY

Paper No. IMECE2009-11972, pp. 1681-1690; 10 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Liquid cooling is an efficient way to remove heat fluxes with magnitude of 1 to 10,000 W/cm2 . One limitation of current single-phase microchannel heat sinks is the relatively low Nusselt number, because of laminar flow. In this work, we experimentally investigate how to enhance the Nusselt number in the laminar regime with the periodic injection of non-condensable bubbles in a water-filled array of microchannels in a segmented flow pattern. We designed a polycarbonate heat sink consisting of an array of parallel microchannels with a low ratio of heat to convective resistance, to facilitate the measurement of the Nusselt Number. Our heat transfer and pressure drop measurements are in good agreement with existing correlations, and show that the Nusselt number of a segmented flow is increased by more than a hundred percent over single-phase flow provided the mass velocity is within a given range.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In