Full Content is available to subscribers

Subscribe/Learn More  >

Computational Studies of EHD-Enhanced Condensation Heat Transfer on a Downward-Facing Horizontal Plate

[+] Author Affiliations
Payam Sharifi, Asghar Esmaeeli

Southern Illinois University at Carbondale, Carbondale, IL

Paper No. IMECE2009-11786, pp. 1659-1665; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


This study aims to investigate the effect of uniform electric fields on the enhancement of condensation heat transfer from a downward facing horizontal plate by direct numerical simulations. The governing equations of fluid flow and electric field are solved using a front tracking/finite difference technique in the framework of Taylor’s leaky dielectric model. The electric force comprises of the dielectrophoretic and the Coulomb forces. Both forces act on the phase boundary and their relative magnitude and directions affect the condensation rate. For the results shown here, the condensate drops are more elongated compared to the those in zero-electric field. It is shown that the electric field enhances the condensation rate in two ways: by increasing the number of the drops that are generated per unit surface due to destablizing the interface and by increasing the frequency of drop generation and pinch off. The mechanism of elongation of the condensate drops are explained by detailed examination of the distribution of the electric field at the phase boundary.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In