0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Pressure Losses Caused by Bends in Pneumatic Conveying Pipeline

[+] Author Affiliations
Jie Cui

Tennessee Technological University, Cookeville, TN

Paper No. IMECE2009-11676, pp. 1655-1658; 4 pages
doi:10.1115/IMECE2009-11676
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Pneumatic conveying pipelines are widely employed in many industries to transport granular solids. Use of bends with various turning radii in these pipelines is mandatory and it is well known that the bends cause a loss of energy which results in an additional pressure drop. The pressure loss associated with various bends in pneumatic conveying pipelines was studied numerically. The numerical modeling results were validated against laboratory measurements, and parametric studies were performed to examine various factors that affect the pressure loss caused by bends in pneumatic conveying pipelines. Since the numerical results supply flow information at every location in the pipeline, the flow pattern and pressure field of air and pellet were resolved in detail to investigate the mechanism of the pressure loss in such systems.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In