Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Management of Telecommunication Cabinets Using Thermoelectric Coolers

[+] Author Affiliations
Feroz Ahamed Iqbal Mariam, Veerendra Mulay, Saket Karajgikar, Dereje Agonafer

The University of Texas at Arlington, Arlington, TX

Mark Hendrix

CommScope Solutions Inc., Richardson, TX

Paper No. IMECE2009-13136, pp. 1469-1475; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Telecommunication cabinets are standalone outdoor enclosures, which houses electronic components and switching devices. These electronics are powered by DC power and have backup batteries to support them in the event of power supply failure. The heat loads on these cabinets are dependent not only on the heat dissipated by the internal components but also by solar heating. Therefore the ambient temperatures around the cabinet, based on the location and time of day can vary anywhere from −40°C to +50°C. The life of a battery is dependent on the nature of the load applied, recharging conditions and most importantly ambient temperatures. Batteries supporting the cabinet electronics are either housed within the cabinet or in compartments attached to the cabinet. For long standing battery life, the temperature inside these battery compartments should be kept below 25°C [1]. Active cooling using air-conditioners are often used to achieve this, but air-conditioners are difficult to backup and are high in maintenance. A more convenient way to cool the battery compartments are to use Thermo-electric Coolers (TEC) as they are less bulky and quite. This paper discusses the validation of results of numerical modeling of a telecommunication cabinet, which uses TEC to cool its battery compartment, with experimental data for the corresponding real world model.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In