Full Content is available to subscribers

Subscribe/Learn More  >

Conceptual Design, Performance Evaluation and Dimensional Optimization of a Compact Acceleration Sensor Based on Flexure Parallel Mechanisms

[+] Author Affiliations
Dan Zhang

Qingdao Technological University, Qingdao, China; University of Ontario Institute of Technology, Oshawa, ON, Canada

Zhen Gao

University of Ontario Institute of Technology, Oshawa, ON, Canada

Paper No. DETC2011-48089, pp. 999-1008; 10 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME


In this paper, a tridimensional acceleration sensor based on flexure parallel mechanism (FPM) is presented. Three perpendicular compliant legs with compact monolithic structure are served as the elastic body for sensing the inertial signals in each direction. With integrated flexure hinges, each chain containing multiple revolute joints and cantilever beams are designed to carry compressive and tensile loads. Firstly, the structure evolution and kinematics modeling are introduced, followed by the multi-spring modeling of the directional compliance for the flexure leg. Then, the comprehensive finite-element analysis (FEA) including the strain of the sensitive legs, modal analysis for total deformation under different frequency is conducted. The compliances calculated by FEA and multi-spring model are compared. Finally, the dimensional optimization is implemented based on multi-population genetic algorithm to obtain the optimal flexure parameters. The proposed methods and algorithms are also useful for the analysis and development of other flexure parallel mechanisms.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In