Full Content is available to subscribers

Subscribe/Learn More  >

Entropy Generation Analysis of Microchannel Heat

[+] Author Affiliations
Jaehoon Jung, Sung Jin Kim

KAIST, Daejeon, Republic of Korea

Paper No. IMECE2009-10841, pp. 1315-1321; 7 pages
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME


Analytical solutions for entropy generation rate distribution associated with heat transfer and fluid friction in microchannel heat sinks are examined. Microchannel heat sinks are modeled as a porous medium through which fluid flows. Analytical solutions are obtained by using velocity and temperature distributions of microchannel heat sinks, which are based on the modified Darcy model for fluid flow and the two-equation model for heat transfer. Using the analytical solution, the entropy generation of heat sinks was obtained. The effects of height, channel width, and fin thickness on the entropy generation rate were studied and thermal optimization of heat sink was performed.

Copyright © 2009 by ASME
Topics: Heat , Entropy , Microchannels



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In