0

Full Content is available to subscribers

Subscribe/Learn More  >

Mass Production and Installation of X100 Linepipe for Strain-Based Design Application

[+] Author Affiliations
Nobuyuki Ishikawa, Mitsuhiro Okatsu, Shigeru Endo

JFE Steel Corporation, Kurashiki, Japan

Joe Kondo

JFE Steel Corporation, Fukuyama, Japan

Joe Zhou, David Taylor

TransCanada Pipelines Ltd., Calgary, Alberta, Canada

Paper No. IPC2008-64506, pp. 705-711; 7 pages
doi:10.1115/IPC2008-64506
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME

abstract

Continuous efforts have been made for the realization of strain-based design pipeline using high grade linepipe materials. Two demonstrative constructions of the pipelines using X100 linepipe proved sufficient materials properties for strain-based design and high quality field welding with good productivity. In order to verify further applicability of high strain X100 linepipe for long distance transmission, large scale installation of X100 pipeline was accomplished. Mass production of X100 linepipe of about 2,000 metric tons with the size of 42″ OD and 14.3mm wall thick was successfully conducted by applying recent developed TMCP process including accelerated cooling and online heat treatment process and UOE pipe forming. Field girth welding was safely completed by the dual tandem pulsed GMAW, and sufficient girth weld properties were demonstrated. This paper will describe material development and mass production results of X100 linepipe for strain-based design which specifying longitudinal tensile properties such as Y/T ratio and uniform elongation. In order to securely specify the shape of stress-strain curve without Luders elongation, material parameter “stress ratio” was introduced for the material specification for compressive strain capacity. Stringent base metal requirements were imposed for base metal material properties in this project. One of the most challenging aspects in developing high strain linepipe is to balance uniform elongation and Charpy absorbed energy. Dual phase microstructure is essential to improve strain capacity, but this may lead to lower Charpy absorbed energy. Therefore, precise control of microstructure by controlling plate manufacturing parameter was required. In addition, on-line heating process subsequently after accelerated cooling enabled increase of Charpy energy without deteriorating uniform elongation. Girth weld properties were closely evaluated using the X100 pipe in as UOE condition and after external coating. All the material properties of base metal and girth weldment of the X100 linepipes used for this project fulfill the stringent requirement for strain-based design consideration to prevent buckling and weld fracture.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In