0

Full Content is available to subscribers

Subscribe/Learn More  >

A Model of Caterpillar Locomotion Based on Assur Tensegrity Structures

[+] Author Affiliations
Omer Orki, Offer Shai, Amir Ayali

Tel Aviv University, Tel Aviv, Israel

Uri Ben-Hanan

Ort Braude College, Karmiel, Israel

Paper No. DETC2011-47708, pp. 739-745; 7 pages
doi:10.1115/DETC2011-47708
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME

abstract

This paper presents an ongoing project aiming at building a robot composed of Assur tensegrity structures, which mimics caterpillar locomotion. Caterpillars are soft-bodied animals capable of making complex movements with astonishing fault-tolerance. In our model, each caterpillar segment is represented by a 2D tensegrity triad consisting of two bars connected by two cables and a strut. The cables represent the major longitudinal muscles of the caterpillar, while the strut represents hydrostatic pressure. The control scheme in this model is divided into localized low-level controllers and a high-level control unit. The unique engineering properties of Assur tensegrity structures, which were mathematically proved last year, together with the suggested control algorithm provide the model with robotic softness. Moreover, the degree of softness can be continuously changed during simulation, making this model suitable for simulation of soft-bodied caterpillars as well as other types of soft animals.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In