0

Full Content is available to subscribers

Subscribe/Learn More  >

Spinal Implant With Adjustable and Nonlinear Stiffness

[+] Author Affiliations
Eric R. Dodgen, Larry Howell, Anton Bowden

Brigham Young University, Provo, UT

Paper No. DETC2011-47913, pp. 589-595; 7 pages
doi:10.1115/DETC2011-47913
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME

abstract

The human spine is a complex mechanism composed of both passive and active components. The nonlinear stiffness of the passive components provides mechanical stability to the system. There is a need for spinal implants that have nonlinear stiffness to provide this stabilization if the spine loses stiffness through injury, degeneration, or surgery. There is also a need for spinal implants to be customizable for individual needs. This paper proposes contact-aided inserts to be used with the FlexSuRe™ spinal implant to create a nonlinear stiffness. Moreover, different inserts can be used to create different behaviors. To show this effect an elliptical contact surface is considered and the inserts are varied by changing the semi-major axis of the elliptical section. An analytical model is introduced for insert design, and the model is verified by comparing the models force-deflection profiles to a finite element model and tests of physical prototypes. The models and experiments demonstrate that it is feasible to create a spinal implant that has a nonlinear stiffness, and that different inserts can be used with the base implant to customize the behavior for individual needs. The analytical model developed is a tool available for implant design.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In