Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Pipeline Misalignment on the Local Buckling Response

[+] Author Affiliations
Aiman Al-Showaiter

C-CORE, St. John’s, NL, Canada

Farid Taheri

Dalhousie University, Halifax, NS, Canada

Shawn Kenny

Memorial University of Newfoundland, St. John’s, NL, Canada

Paper No. IPC2008-64004, pp. 507-515; 9 pages
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME


Pipeline transportation systems are generally constructed by connecting individual linepipe segments through joint-to-joint end girth welds. The mechanical behavior of shell structures, such as a pipeline, can be sensitive to initial imperfections in geometry, material properties and loading. These initial imperfections can affect the pipeline load-deformation response and reduce the limit moment and strain capacity. Initial geometric imperfections may result from fabrication processes, as related to variations in the pipeline diameter and wall thickness. These geometric imperfections may have circumferential and longitudinal variation. During the construction process, the initial geometric imperfections may be the result of end misalignment due to longitudinal pipeline offset and ovality. This study examines the influence of initial geometric imperfections associated with joint-to-joint misalignment that may be present due to the girth welding process when connecting pipeline segments. A parametric analysis was conducted using finite element methods to assess the effects of diameter-to-wall thickness ratio, internal pressure, axial force, misalignment amplitude, and misalignment orientation, on the local buckling response of pipelines. Through this parametric analysis, the moment-curvature response, variation in section geometry with increasing curvature, limit moment and strain capacity were all examined. Comparison of the results with those obtained from the engineering codes and recommended practice is also presented. This study concludes that offset misalignment orientation, with respect to the bending axis, and the increasing misalignment imperfection amplitude both affect the pipeline peak moment and global strain capacity at the limit moment.

Copyright © 2008 by ASME
Topics: Pipelines , Buckling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In