Full Content is available to subscribers

Subscribe/Learn More  >

Synthesis of a Variable Displacement Linkage for a Hydraulic Transformer

[+] Author Affiliations
Shawn R. Wilhelm, James D. Van de Ven

Worcester Polytechnic Institute, Worcester, MA

Paper No. DETC2011-47339, pp. 309-316; 8 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME


A hydraulic pump/motor with high efficiency at low displacements is required for a compressed air energy storage system that utilizes a liquid piston for near-isothermal compression. To meet this requirement, a variable displacement six-bar crank-rocker-slider mechanism, which goes to zero displacement with a constant top dead center position, has been designed. The synthesis technique presented in the paper develops the range of motion for the base four-bar crank-rocker, creates a method of synthesizing the output slider dyad, and analyzes the mechanisms performance in terms of transmission angles, slider stroke, mechanism footprint, and timing ratio. It is shown that slider transmission angles can be kept above 60 degrees and the base four-bar transmission angles can be controlled in order to improve overall efficiency. This synthesis procedure constructs a crank-rocker-slider mechanism for a variable displacement pump/motor that can be efficient throughout all displacements.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In