0

Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Soil Cohesiveness and Depth on Dynamic Ductile Fracture Speeds

[+] Author Affiliations
D. Rudland, D.-J. Shim, G. M. Wilkowski

Engineering Mechanics Corporation of Columbus, Columbus, OH

S. Kawaguchi, N. Hagiwara

Tokyo Gas, Tokyo, Japan

D. Horsley

BP Exploration and Production Technology, Alberta, Canada

Paper No. IPC2008-64461, pp. 345-352; 8 pages
doi:10.1115/IPC2008-64461
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME

abstract

The ductile fracture resistance of newer line pipe steels is of concern for high grade/strength steels and higher-pressure pipeline designs. Although there have been several attempts to make improved ductile fracture arrest models, the model that is still used most frequently is the Battelle Two-Curve Method (TCM). This analysis incorporates the gas-decompression behavior with the fracture toughness of the pipe material to predict the minimum Charpy energy required for crack arrest. For this analysis, the influence of the backfill is lumped into one empirically developed “soil” coefficient which is not specific to soil type, density or strength. No attempt has been made to quantify the effects of soil depth, type, total density or strength on the fracture speeds of propagating cracks in line pipe steels. In this paper, results from small-scale and large-scale burst tests with well-controlled backfill conditions are presented and analyzed to determine the effects of soil depth and cohesiveness on the fracture speeds. Combining this data with the past full-scale burst data used in generating the original backfill coefficient provides additional insight into the effects of the soil properties on the fracture speeds and the arrest of running ductile fractures in line pipe materials.

Copyright © 2008 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In