0

Full Content is available to subscribers

Subscribe/Learn More  >

Full-Scale Burst Tests of Ultra-High Pressured Rich-Gas Pipelines Under Buried and Unburied Conditions

[+] Author Affiliations
Shinobu Kawaguchi, Kazue Murai, Yoshikazu Hashimoto

Tokyo Gas Co., Ltd., Yokohama, Japan

Naoto Hagiwara, Hidekuni Yajima

Japan Gas Association, Tokyo, Japan

Masao Toyoda

Osaka University, Suita, Osaka, Japan

Paper No. IPC2008-64434, pp. 327-336; 10 pages
doi:10.1115/IPC2008-64434
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME

abstract

The results of four full-scale burst tests conducted at the test site in Denmark were reported and the required fracture toughness for arrest was discussed for the X80 pipeline used for rich-gas transmission under ultra-high pressure (defined as greater than a 15 MPa internal pressure). The ductile crack arrest behavior was evaluated for buried using well-compacted sand and unburied conditions. The initial internal pressure of the tests was approximately 18.4 and 16.2 MPa corresponding to hoop stress of 400 and 350 MPa (72% SMYS and 64% SMYS), respectively. Natural gas that consisting of 89∼90 mol % methane and the balance being heavier hydrocarbons that give the rich-gas compositions was used for the burst tests. The outer diameters of the tested pipes were 762 mm (30-inch) and 610 mm (24-inch). The velocities of the propagated ductile cracks and the rich-gas decompression were determined from the data measured at the sampling rate of 25 kHz. Based on these test results, the required Charpy v-notch impact energy (vE energy) was used as a measure of the fracture resistance for arrest of the ductile propagating cracks evaluated under different backfill depth conditions. The applicability of the Battelle Two-Curve (BTC) approach was also investigated.

Copyright © 2008 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In