0

Full Content is available to subscribers

Subscribe/Learn More  >

Strain Aging Effects in High Strength Line Pipe Materials

[+] Author Affiliations
Da-Ming Duan, Joe Zhou

TransCanada Pipelines Limited, Calgary, Alberta, Canada

Brian Rothwell

Brian Rothwell Consulting Inc., Calgary, Alberta, Canada

David Horsley

BP Exploration and Production Technology, Calgary, Alberta, Canada

Nick Pussegoda

BMT Fleet Technology Ltd, Kanata, Ontario, Canada

Paper No. IPC2008-64427, pp. 317-326; 10 pages
doi:10.1115/IPC2008-64427
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME

abstract

Strain aging behavior can occur in almost all steels, including micro-alloyed steels used in high-strength pipelines. The direct effects of strain aging on mechanical properties can include increased hardness, yield strength and tensile strength, and reduced ductility and toughness. Strain aging may take place in processes where the pipe material experiences thermal cycles, such as coating, welding and in-service heating, and may occur with or without additional plastic strain. The changes of material mechanical properties could seriously challenge the design principles and methodologies, so that these aging effects need to be taken into account. This is especially important for pipelines expected to see deformation-controlled loading conditions. This is not only because the difference in strain aging effects between a weld and the parent material can easily change the strength overmatch condition of the weld, leading to unpredictable girth weld flaw tolerance, but also because the return of Lüders behavior on the stress-strain curves of these materials significantly reduces the pipe buckling load resistance. In addition, any change in fracture resistance due to strain aging may impact the fracture control design practice, particularly if the pipe material may be expected to experience plastic deformation during service. In this paper, a brief review of strain aging behavior in steels is presented, with an emphasis on the effects on the mechanical properties and toughness of three high-strength line pipe steels. Material strain aging mechanical test procedures of three high grade pipes will be described and the test results will be discussed.

Copyright © 2008 by ASME
Topics: Pipes

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In