Full Content is available to subscribers

Subscribe/Learn More  >

Mobility Analysis of Flexure Mechanisms via Screw Algebra

[+] Author Affiliations
Hai-Jun Su

University of Maryland, Baltimore County, Baltimore, MD

Paper No. DETC2011-48012, pp. 159-168; 10 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME


This paper presents a general framework for studying the mobility of flexure mechanisms with an arbitrary topology using screw algebra. The current approach for mobility analysis of flexures is ad hoc and mostly done by intuition. In this methodology, we first build a library of commonly used flexure elements, flexure joints and simple chains. We then apply the screw algebra to find their motion and constraint spaces in the form of twist and wrench matrices. To analyze a general flexure mechanism, we first apply a top-down approach to hierarchically subdivide it into multiple modules or building blocks down to the level of flexure structures that are already provided in the library. We then use a bottom-up routine to study the mobility of each module up to the level of the overall mechanism. Extensive examples and case studies from simple flexure joints, chains to spatial compliant platforms are used to demonstrate the methodology. This systematic methodology is an important tool for guiding the early stages in flexure mechanism design.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In