0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Apparatus for CTOA Measurement in Pipeline Steels

[+] Author Affiliations
Avigdor Shtechman, Christopher McCowan, Rony Reuven, Elizabeth Drexler, Philippe Darcis, J. Matthew Treinen, Thomas Siewert, J. David McColskey

National Institute of Standards and Technology, Boulder, CO

Robert Smith, James Merritt

U.S. DOT Office of Pipeline Safety, Washington, DC

Paper No. IPC2008-64362, pp. 273-278; 6 pages
doi:10.1115/IPC2008-64362
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8

abstract

When a crack initiates and propagates in a pressurized pipe, the only thing that might stop this high-velocity event is the release of internal pressure (decompression), resulting in a deceleration in the crack-propagation rate. This deceleration can be achieved through the use of crack arrestors, or the ability of the pipeline material to resist ductile fracture. To evaluate the resistance to crack growth, the crack tip opening angle (CTOA) is used. Recent articles on the CTOA of pipeline steels at quasi-static rates with modified double cantilever beam specimens (MDCB), and at dynamic displacements rates by use of drop weight tear testing have provided data to support this need. These laboratory results from the literature, compared with results of full-scale tests, indicate that details of the fracture mode depend on the rate of fracture. To further study the dependence among the rate, fracture mode, and CTOA, a dynamic test apparatus was designed to perform CTOA testing of MDCB specimens, so that comparisons to quasi-static and full-scale results could be made. This new apparatus consists of a 500 kN uniaxial hydraulic test machine capable of stand-alone displacement rates of 300 mm/s, and a disc spring apparatus that is used to further accelerate the testing displacement rate. Initial results of the testing show that full slant fracture mode is observed at the highest rates tested for X65 and X100 steels. Maximum crack velocities approaching 10 m/s were recorded with highspeed photography. CTOA measurements were typically made at a position about 30 mm ahead of the pre-fatigue crack, over a distance of about 15 mm in the steady-state crack propagation regime. In this paper, we describe the high-speed apparatus, discuss the relationship among specimen configuration, crack speed, and CTOA, and present initial results on X65 and X100 pipeline steels.

Topics: Steel , Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In