0

Full Content is available to subscribers

Subscribe/Learn More  >

Curve Decomposition Analysis for Fixed-Guided Beams With Application to Statically Balanced Compliant Mechanisms

[+] Author Affiliations
Charles Kim

Bucknell University, Lewisburg, PA

Paper No. DETC2011-47829, pp. 149-158; 10 pages
doi:10.1115/DETC2011-47829
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME

abstract

Statically balanced compliant mechanisms require no holding force throughout their range of motion while maintaining the advantages of compliant mechanisms. In this paper, a post-buckled fixed-guided beam is proposed to provide the negative stiffness to balance the positive stiffness of a compliant mechanism. To that end, a unique curve decomposition modeling method is presented to simplify the large deflection analysis. The modeling method facilitates parametric design insight and elucidates key points on the force-deflection curve. Experimental results validate the analysis. Furthermore, static balancing with fixed-guided beams is demonstrated for a rectilinear proof-of-concept prototype.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In