0

Full Content is available to subscribers

Subscribe/Learn More  >

A Pseudo-Rigid-Body Model Approach for the Design of Compliant Mechanism Springs for Prescribed Force-Deflections

[+] Author Affiliations
Levi C. Leishman, Mark B. Colton

Brigham Young University, Provo, UT

Paper No. DETC2011-47590, pp. 93-102; 10 pages
doi:10.1115/DETC2011-47590
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 35th Mechanisms and Robotics Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5483-9
  • Copyright © 2011 by ASME

abstract

Compliant mechanism springs offer a variety of benefits for applications where nonlinear force responses are desired. Designing a compliant mechanism spring with a prescribed force response is a unique challenge with many design variables. This paper introduces a method, based on the Pseudo-Rigid-Body Model (PRBM) for large beam deflections, to synthesize three- and four-link compliant mechanisms that exhibit prescribed force-deflection responses. The designer prescribes the target force-deflection curve, the number of links the spring is to have, and bounds for the spring’s link lengths and torsional spring constants. The method uses a genetic algorithm routine to search for promising designs and a direct search method to further refine the configuration to achieve the desired force-deflection curve. Experimental results illustrate the methods ability to generate springs whose force-deflection curves approximate the target curves. The results also suggest that inclusion of more complex configurations may lead to more accurate designs. It is shown how the method can be used to design springs that closely mimic the behavior of zero-free-length springs, and a discussion of how the method can be extended to design springs that behave similarly to pre-tensioned springs is presented.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In