0

Full Content is available to subscribers

Subscribe/Learn More  >

Improving Identifiability in Model Calibration Using Multiple Responses

[+] Author Affiliations
Paul D. Arendt, Wei Chen, Daniel W. Apley

Northwestern University, Evanston, IL

Paper No. DETC2011-48623, pp. 1213-1222; 10 pages
doi:10.1115/DETC2011-48623
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME

abstract

The use of complex computer simulations to design, improve, optimize, or simply to better understand complex systems in many fields of science and engineering is now ubiquitous. However, simulation models are never a perfect representation of physical reality. Two general sources of uncertainty that account for the differences between simulations and experiments are parameter uncertainty and model uncertainty. The former derives from unknown model parameters, while the latter is caused by underlying missing physics, numerical approximations, and other inaccuracies of the computer simulation that exist even if all of the parameters are known. To obtain knowledge of these two sources of uncertainty, data from computer simulations (usually abundant) and data from physical experiments (typically more limited) are often combined using statistical methods. Statistical adjustment of the computer simulation model to account for the two sources of uncertainty is referred to as calibration. We argue that calibration as it is typically implemented, using only a single response variable, is challenging in that it is often extremely difficult to distinguish between the effects of parameter and model uncertainty. However, many different responses (distinct responses and/or the same response measured at different spatial and temporal locations) are automatically calculated in simulations. As multiple responses generally share a mutual dependence on the unknown parameters, they provide valuable information that can improve identifiability of parameter and model uncertainty in calibration, if they are also measured experimentally. In this paper, we explore the use of multiple responses for calibration.

Copyright © 2011 by ASME
Topics: Calibration

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In