Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying Model Uncertainty Using Measurement Uncertainty Standards

[+] Author Affiliations
Xiaoping Du, Harsheel Shah

Missouri University of Science and Technology, Rolla, MO

Paper No. DETC2011-47865, pp. 1161-1167; 7 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME


There is always a deviation between a model prediction and the reality that the model intends to represent. The deviation is largely caused by the model uncertainty due to ignorance, assumptions, simplification, and other sources of lack of knowledge. Quantifying model uncertainty is a vital task and requires the comparison between model prediction and observation. This exercise is generally computationally intensive on the prediction side and costly on the experimentation side. In this work, a new methodology is proposed to provide an alternative implementation of model uncertainty quantification. With the new methodology, the experimental results are reported with expanded uncertainty terms around the experimental results for both model input and output. In other words, the experimental results are expressed as intervals. Then the model takes the experimental results of the input intervals and produces an interval prediction. The model uncertainty is then quantified by the difference between the model prediction and experimental observation, represented by an interval as well. By employing the standards for measurement uncertainty, the new methodology is easy to implement and could serve as a common framework for both model builders and experimenters.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In