Full Content is available to subscribers

Subscribe/Learn More  >

Fracture Propagation and Arrest in High-Pressure Gas Transmission Pipeline by Ultra High Strength Line Pipes

[+] Author Affiliations
Hiroyuki Makino, Ryouta Higuchi

Sumitomo Metal Industries Ltd., Amagasaki, Hyogo, Japan

Izumi Takeuchi

Sumitomo Metal Industries Ltd., Tokyo, Japan

Paper No. IPC2008-64078, pp. 39-48; 10 pages
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4859-3 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME


The fracture arrest of high pressure gas pipelines is one of the keen subjects for application of high strength line pipes. To examine the arrestability of high strength line pipes against crack propagation, several full scale fracture propagation tests have been conducted. The fracture propagation tests of X100 or X120 under high pressure revealed that the existing models of arrest energy prediction failed to predict the arrest energies. By careful investigations of the test results, it is found that the failure in prediction is mainly due to the uncertainty of crack velocity curve prediction. On the other hand, accuracy of predicted gas decompression curve is relatively high even in the case of high pressure condition. Experimentally, the arrest energies have been determined by full-scale fracture propagation tests with increasing toughness arrangement. Different from actual pipeline, extremely low toughness pipe has been employed in crack initiation pipe with intention of getting steady state propagation. However, arrestability of pipe might be underestimated in the increasing toughness arrangement test as the initial crack velocity increases. Together with recalibrated crack velocity curve, Sumitomo model (HLP method with Sumitomo’s crack velocity curve) predicts that even toughness arrangement, which is the case of real pipelines, could arrest the propagating shear fracture in high pressure gas pipelines by X100.

Copyright © 2008 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In