Full Content is available to subscribers

Subscribe/Learn More  >

Multiscale Design and Multiobjective Optimization of Orthopaedic Cellular Hip Implants

[+] Author Affiliations
Sajad Arabnejad Khanoki, Damiano Pasini

McGill University, Montreal, QC, Canada

Paper No. DETC2011-47487, pp. 935-944; 10 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME


A multiscale design and multiobjective optimization procedure is developed to design a new type of graded cellular hip implant. We assume that the prosthesis design domain is occupied by a unit cell representing the building block of the implant. An optimization strategy seeks the best geometric parameters of the unit cell to minimize bone resorption and interface failure, two conflicting objective functions. Using the asymptotic homogenization method, the microstructure of the implant is replaced by a homogeneous medium with an effective constitutive tensor. This tensor is used to construct the stiffness matrix for the finite element modeling (FEM) solver that calculates the value of each objective function at each iteration. As an example, a 2D finite element model of a left implanted femur is developed. The relative density of the lattice material is the variable of the multiobjective optimization, which is solved through the non-dominated sorting genetic algorithm II (NSGA-II). The set of optimum relative density distributions is determined to minimize concurrently interface stress distribution and bone loss mass. The results show that the amount of bone resorption and the maximum value of interface stress can be reduced by over 70% and 50%, respectively, when compared to current fully dense titanium stem.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In