0

Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying the Convergence Time of Distributed Design Processes

[+] Author Affiliations
Erich Devendorf, Kemper Lewis

University at Buffalo - SUNY, Buffalo, NY

Paper No. DETC2011-48377, pp. 891-902; 12 pages
doi:10.1115/DETC2011-48377
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME

abstract

Time is an asset of critical importance in the design process and it is desirable to reduce the amount of time spent developing products and systems. Design is an iterative activity and a significant portion of time spent in the product development process is consumed by design engineers iterating towards a mutually acceptable solution. Therefore, the amount of time necessary to complete a design can be shortened by reducing the time required for design iterations or by reducing the number of iterations. The focus of this paper is on reducing the number of iterations required to converge to a mutually acceptable solution in distributed design processes. In distributed design, large systems are decomposed into smaller, coupled design problems where individual designers have control over local design decisions and seek to satisfy their own individual objectives. The number of iterations required to reach equilibrium solutions in distributed design processes can vary depending on the starting location and the chosen process architecture. We investigate the influence of process architecture on the convergence behavior of distributed design systems. This investigation leverages concepts from game theory, classical controls and discrete systems theory to develop a transient response model. As a result, we are able to evaluate process architectures without carrying out any solution iterations.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In