Full Content is available to subscribers

Subscribe/Learn More  >

Sequential Sampling With Kernel-Based Bayesian Network Classifiers

[+] Author Affiliations
David Shahan, Carolyn C. Seepersad

The University of Texas at Austin, Austin, TX

Paper No. DETC2011-48318, pp. 877-890; 14 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME


Complex design problems are typically decomposed into smaller design problems that are solved by domain-specific experts who must then coordinate their solutions into a satisfactory system-wide solution. In set-based collaborative design, collaborating engineers coordinate themselves by communicating multiple design alternatives at each step of the design process. Previous research has demonstrated that classifiers can be a communication medium for facilitating set-based collaborative design because of their ability to divide a design space into satisfactory and unsatisfactory regions. The proposed kernel-based Bayesian network (KBN) classifier uses a set of example designs of known acceptability, called the training set, to create a map of the satisfactory region of the design space. However, previous implementations used deterministic space-filling sampling sequences to choose the training set of designs. The shortcoming of deterministic space-filling sampling schemes is that they do not adapt to focus the samples on regions of interest to the design team (exploitation) or, alternatively, on regions in which little information is known (exploration). In this paper, we introduce the use of KBN classifiers as the basis for sequential sampling strategies that can be exploitive, exploratory, or any combination thereof.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In