0

Full Content is available to subscribers

Subscribe/Learn More  >

Towards a Validated Pipeline Dent Integrity Assessment Model

[+] Author Affiliations
Brock Bolton, Vlado Semiga, Aaron Dinovitzer, Sanjay Tiku

BMT Fleet Technology Limited, Kanata, Ontario, Canada

Chris Alexander

Stress Engineering Services, Houston, TX

Paper No. IPC2008-64621, pp. 893-903; 11 pages
doi:10.1115/IPC2008-64621
From:
  • 2008 7th International Pipeline Conference
  • 2008 7th International Pipeline Conference, Volume 2
  • Calgary, Alberta, Canada, September 29–October 3, 2008
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4858-6 | eISBN: 798-0-7918-3835-8
  • Copyright © 2008 by ASME

abstract

Detectable dents in buried pipelines can occur due to a number of potential causes; the pipe resting on rock, third party machinery strike, rock strikes during backfilling. The integrity of a dented pipeline segment is a complex function of a variety of parameters, including pipe geometry, indenter shape, dent depth, indenter support and pressure history at and following indentation. In order to estimate the safe remaining operational life of a dented pipeline, all of these factors must be accounted for in the analysis. The following paper summarizes ongoing efforts to develop a validated pipeline dent integrity assessment model. The model under development makes use of experimental tests to validate a finite element model of the denting and re-rounding process for a variety of dent scenarios (i.e. depths, restraints, indenter sizes). The results of the finite element model are then used in conjunction with the estimated pressure-time history in an integrity assessment procedure to estimate the safe remaining operational life of the pipe segment. The paper presents a discussion of the full scale fatigue tests carried out on dented pipeline segments and the efforts under way to develop and validate a finite element model of the experimental specimens with the goal of estimating the experimental fatigue life.

Copyright © 2008 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In