0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Approach to Study and Compare the Annual Performance of Liquid and Solid Desiccant Cooling Systems

[+] Author Affiliations
Fatemeh Esfandiari Nia, Patrick E. Phelan

Arizona State University, Tempe, AZ

Paper No. IMECE2009-12490, pp. 899-907; 9 pages
doi:10.1115/IMECE2009-12490
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Desiccant cooling systems, considered one of the sustainable air conditioning technologies, have been attractive for researchers to be studied for many years. In this paper, the modeling and simulation of a packed tower liquid dehumidifier and regenerator as well as a solid desiccant wheel are presented. The simplified equations that predict the air conditions after passing these systems are developed. This approach is quick and does not need a lengthy computer calculation and large memory capacity. Liquid and solid desiccant cooling cycles are presented and using this approach, the performance of these systems is calculated for weather data of a reference year and different climates in the United States. These systems are compared regarding their energy and water consumption based on this new approach. The first results show that liquid desiccant systems, without technology improvements, have the large sizes at lower capacities and have lower coefficients of performance than solid desiccant cooling systems.

Copyright © 2009 by ASME
Topics: Cooling systems

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In