0

Full Content is available to subscribers

Subscribe/Learn More  >

Simultaneous Requirement and Design Optimization of an Industrial Robot Family Using Multi-Objective Optimization

[+] Author Affiliations
Daniel Wäppling, Jakob Weström

ABB Robotics, Västerås, Sweden

Xiaolong Feng, Hans Andersson, Marcus Pettersson, Björn Lunden

ABB Corporate Research, Västerås, Sweden

Paper No. DETC2011-47819, pp. 815-823; 9 pages
doi:10.1115/DETC2011-47819
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME

abstract

Simultaneous development of an industrial robot family, consisting typically of 2–10 robots, has been an engineering practice in robotics industry. In this process, significant scenario studies on defining product requirement specifications and associated design change are conducted. This implies that understanding the relation between product requirements and design of the robot family is of critical importance. However, in the current engineering practice, any change in requirement specification results in tremendous efforts in the re-design of the robot family. This discloses the need for efficient methodology and tools for simultaneously optimizing product requirements and design of an industrial robot family. In this work, methodology and tools have been successfully developed for simultaneously optimizing product requirements and design of an industrial robot family in a fully automated way. This problem is formulated to a multi-objective optimization problem and solved using multi-objective genetic algorithm (MOGA). Results of this work have demonstrated clearly the efficiency of this approach and the insight obtained on the relation between product requirement and product design. The developed methodology and results of simultaneous requirement specification and design optimization will be detailed in this paper. In addition, research experience and future work will also be discussed. To our best knowledge, the simultaneous optimization of product requirement and product design has not been widely investigated and explored in academia. The trade-off information explored by such approach is crucial in product development in industrial practice. Such approach will further increase the complexity of traditional design optimization approach where product requirement is normally pre-defined and used as constraint. It is certain that discussions of the addressed problem and developed methodology will contribute to promoting the significance of efforts in the research society of multi-objective design optimization, multi-objective design optimization of product families, and design automation.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In