0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Analysis of a High-Lift and Low Reynolds Number Airfoil at Turbulent Atmospheric Conditions

[+] Author Affiliations
Mazharul Islam, Yasir M. Shariff

Taibah University, Madinah, Saudi Arabia

M. Ruhul Amin

Montana State University, Bozeman, MT

Paper No. IMECE2009-10587, pp. 867-874; 8 pages
doi:10.1115/IMECE2009-10587
From:
  • ASME 2009 International Mechanical Engineering Congress and Exposition
  • Volume 9: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A, B and C
  • Lake Buena Vista, Florida, USA, November 13–19, 2009
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4382-6 | eISBN: 978-0-7918-3863-1
  • Copyright © 2009 by ASME

abstract

Selection of airfoil is crucial for better aerodynamic performance and design of aerodynamic applications such as wind turbine and aircrafts. In this paper, a high-lift and low-Reynolds number airfoil has been selected and investigated through computational analysis for applying it for small-sized wind turbines as blades. The S1223 airfoil, designed by the University of Illinois at Urbana-Champaign, was chosen for its high-lift characteristics at low Reynolds number typically encountered by the small wind turbines. CFD work is performed with S1223 airfoil profile over a wide range of conditions of interest to analyze the performance of the airfoil using the Spalart-Allmaras turbulence model. The results obtained from the simulation works have been compared with experimental data for validation purpose. It has been found that the Spalart-Allmaras model conforms well with the experimental results, though the values of lift coefficients (Cl) are slightly less than the experimental results. In the present analysis, velocity distributions are analyzed at different angle of attacks for different turbulence intensities. It has been observed that there is vortex shedding around the trailing edge of the airfoil for both turbulence levels. It has been observed in the present study that due to increase in turbulence intensity, both the maximum lift coefficient and the stall angle increases significantly. It has been found after investigating the effect of turbulence intensity over lift-to-drag coefficient ratio that it drastically decreases due to increase in turbulence intensity up to certain value (about 3.5%), then it starts decreasing in gradual manner.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In