0

Full Content is available to subscribers

Subscribe/Learn More  >

An Improved Support Vector Domain Description Method for Modeling Valid Search Domains in Engineering Design Problems

[+] Author Affiliations
Erin Roach, Robert R. Parker, Richard J. Malak, Jr.

Texas A&M University, College Station, TX

Paper No. DETC2011-48435, pp. 741-751; 11 pages
doi:10.1115/DETC2011-48435
From:
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME

abstract

Predictive modeling is an important tool in engineering design and optimization. Designers can develop a predictive model to replace a computationally-intensive physics-based model (a practice referred to as meta-modeling or response-surface modeling) or to model systems based on empirically-obtained data. However, such models typically have a limited domain of validity—that is, only certain combinations of model inputs yield predictions that are trustable. Consequently, designers must take care to bound the search space of optimization algorithms that otherwise would be unable to distinguish between valid and invalid predictions. Prior research has found that the valid input domain of a model can be shaped irregularly and difficult to model using simple bounds on input variables. The Support Vector Domain Description (SVDD) method was shown to be an effective approach for modeling such boundaries. However, the method used previously for generating the domain description is slow and scales poorly as the size of the training data set grows. This paper describes a new incremental method for generating a SVDD using a point-by-point comparison in place of considering all data points at once. This method is observed to be over 1000 times faster than the original method. This makes the overall approach attractive on problems of practical scale. We describe the new method, explore its characteristics, and demonstrate it on a design example for the selection of component concepts for a commercial power generation plant.

Copyright © 2011 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In