Full Content is available to subscribers

Subscribe/Learn More  >

Learning Stylistic Desires and Generating Preferred Designs of Consumers Using Neural Networks and Genetic Algorithms

[+] Author Affiliations
Ian Tseng, Jonathan Cagan, Kenneth Kotovsky

Carnegie Mellon University, Pittsburgh, PA

Paper No. DETC2011-48642, pp. 601-607; 7 pages
  • ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5: 37th Design Automation Conference, Parts A and B
  • Washington, DC, USA, August 28–31, 2011
  • Conference Sponsors: Design Engineering Division and Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5482-2
  • Copyright © 2011 by ASME


Consumers have different ideas of what makes a design stylish. Some consumers may want a sporty looking car, while others may want a rugged looking or a fuel-efficient looking car. Can computers learn what it means to satisfy those style-based goals and use this knowledge to generate designs that target style-based goals in design? An experiment was conducted where participants were asked to rate computer generated car profiles for sportiness, ruggedness, beauty, and fuel efficiency. This survey data is used as an indicator of consumer stylistic form preferences, and was used to train Artificial Neural Networks (ANN) for each of the four rating categories. The resulting ANNs were then inverted using a Genetic Algorithm (GA) in order to generate new designs that elicit targeted style goals from consumers.

Copyright © 2011 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In